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Abstract This is the first one of two companion papers focusing on the establishment
of a new path for the expectation value dynamics of the quantum mechanical operators.
The main goal of these studies is to do quantum mechanics without explicitly solving
Schrödinger wave equation, in other words, without using wave functions except their
initially given forms. This goal is achieved by using Ehrenfest theorem and utilizing
probabilistic evolution approach (PEA). PEA, first introduced by Metin Demiralp,
is a method providing solutions to the nonlinear ordinary differential equations by
transforming them to a set of linear ODEs at the cost of denumerably infinite dimen-
sionality. It is recently shown that this method produces analytic solutions, if the initial
conditions are given appropriately at some special cases. However, generalization of
these conditions to the quantum mechanical applications is not straightforward due
to the dispersion of the quantum mechanical systems. For this purpose, multivariate
moment problems for the integral representation of the Kronecker power series are
introduced and then solved yielding to more specific and precise convergence analysis
for the quantum mechanical applications.
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1 Introduction

The question of “Is it possible to model quantum mechanical phenomena without
explicitly solving Schrödinger wave equation?” has been lying at the hearth of our
and other researcher’s studies during the last years. This question takes its importance
from two aspects. The first one is the computational ineffectiveness of the Schrödinger
equation because of multidimensionality especially when the system’s degree of free-
dom increases unboundedly. The second and the most important aspect is to deepen
the human kind’s understandings of the quantum mechanical nature by establishing
connections between quantum and the classical mechanics.

The computational expense to numerically solve Schrödinger equation becomes
very high as the dimensionality of the system increases. Beyond that it may become
impossible to get a reliable numerical solution even by using today’s supercomputers.
Considering quantum many body systems, the number of the freedom of the system
under consideration may grow very rapidly in the coordinates and this situation makes
it impossible to solve Schrdinger equation even with the aid of the modern computer
architectures. Density Functional Theory, one of the seminal works related to answer
that question and answering partly “yes” led to the Nobel Prize [1,2].1 In last years,
some variants of that theory such as Orbital Free Density Functional Theory devel-
oped [3–6]. All these approaches require solution of not the Schrödinger equation
but the reduced number of other partial differential equations. Beside these leading
research, Quantum Monte Carlo methods search for the answer and they all have the
limited capability of calculating, even, ground state for the system under consideration.

In addition to the quantum many body systems, optimal control of the quantum
phenomena requires computationally sophisticated algorithms due to the huge number
of iterations and the necessity of solving Schrödinger equation up to a high degree of
numerical accuracy. Since most of the numerical algorithms require or are based on
discretization, the solution may fail to converge due to the error accumulations arising
from discretization.

On the other hand, generally, the wave function is used for the determination of
the expectation values and their time evolutions for certain entities such as position
and momentum operators. The main philosophy of our research is to develop novel
methodologies to be able to determine these expectation value dynamics utilizing
Heisenberg equations of motion. Even though, the Heisenberg equations of motion
are capable of defining dynamics of expectation values of certain quantum mechanical
operators by ordinary differential equations, these equations fail to have a solution in
the most of the cases due to the fact that the ODE defined for an operator involves
at least one unknown expectation value of another operator which does not originally
appear in the analysis. That is to say, the commutator algebra is closed under the
Poisson bracket with the Hamiltonian, generally, only when it is studied for an infinite
set of operators. Moreover, the set of ODEs gathered from Heisenberg equations of
motion are generally nonlinear, depending on the system Hamiltonian, particularly

1 Nobel Prize in chemistry in 1998. Interested reader may see Nobel lecture entitled “Electronic Structure
of Matter—Wave Functions and Density Functionals” by Walter Kohn and references [1,2].
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potential function. Thus, some brand new methodologies have to be developed to
overcome this difficulty.

Probabilistic evolution approach (PEA) is a novel methodology developed to deal
with the above mentioned issues. The main idea that lies at the hearth of this method can
be summarized as follows. Every measurement contains certain level of uncertainty
by principle, in natural sciences such as chemistry and physics related fields. This
uncertainty can generally be characterized by using certain probability distribution
functions. These may not be needed in some circumstances even if they may be always
required by certain systems de pending on their structures. This probability distribution
function appears to be Dirac delta function at the classical mechanics threshold (where
the energy spectrum of a system is continuous by definition) of the quantum mechanics.
However for the discrete spectrum involving cases of quantum dynamics and similar
structures, it has to be defined within a sufficient precision because of the dispersive
nature of the dynamics under consideration. This is usually provided by the solution of
certain partial differential equations like Schrödinger equation. Quantum mechanical
and statistical mechanical systems such as neuronal dynamics in neuroscience can be
considered as examples of the discrete energy spectrum involving cases.

To fully describe system dynamics under consideration, it is usually necessary to
determine how the expectation values of some operator entities, such as position and
momentum in quantum mechanics, evolve forward or backward (or both) in time. This
is achieved by determining and solving ordinary differential equations accompanied
with some initial and/or boundary conditions. The general form of the solution of
initial value problems is as follows:

x(t) = P(t)x(0) (1)

where x(0) denotes initial value and may be a vector entity while P(t), which has
generally matrix or operator character, describes the time evolution of the system
under consideration (it is generally called “Propagator”).

Taking this main philosophy into account, PEA, determines the evolutionary entity,
P(t), of the system numerically and analytically in certain cases. This is achieved
by converting nonlinear ODEs to denumerably infinite set of linear homogeneous
ODEs by using appropriate basis set expansions. The basis set is generally taken to be
composed of power sets appearing in the Taylor series expansions. Fourier basis set
is also used successfully to be able to model the systems whose behaviors are known
to be periodic. PEA can also take the dispersion of the initial system entities into
account by using a probabilistic moment generator for the initial impositions. If the
probabilistic generator is in a Dirac delta function type structure then the initial values
form a power set. Otherwise mathematical fluctuations are needed to relate them to
power sets. The Mathematical Fluctuation Expansion Theory and its certain aspects
will be discussed in a more detailed manner at the companion of this paper [7].

The main focus of this paper is to find a new form of the solutions of PEA for the
quantum mechanical applications in such a way that it makes possible to clarify the
conditions of convergent and analytic solutions. This is achieved by uniquely deter-
mining two different kinds finite interval moment problems: multivariate Hausdorff
moment problem and matrix weighted Hausdorff moment problem.
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After this brief introduction, the remaining part of the paper is organized as follows.
Following section includes preliminary and general framework of the PEA. Definition
of the three typical moment problems and their multivariate variants are given in the
Sect. 3. The Sect. 4 includes the conditions for the existence and the explicitness of
the solution to the multivariate Hausdorff moment problem while the Sect. 5 focuses
on the extension of the fourth section to the cases where not the Kronecker powers but
their images under an appropriately given square matrix valued function of the system
vector are considered. The Sect. 6 discusses the utilization of square matrices whose
types vary from element to element of the sequence at the focus. The paper will be
finalized by giving certain further concluding comments and remarks to go to future
directions as usual.

2 General framework of probabilistic evolution approach (PEA)

PEA is a recently proposed novel methodology which has the ability to convert (or
truely speaking extend) a set of ODEs to a denumerably infinite set of linear and
homogeneous ODEs first, and then, to produce approximate solutions to this infinite
set of ODEs and to deal with nonlinearities and singularities in the potential function
of the system under consideration up to some extend by utilizing Kronecker product
and Kronecker powers [8–14]. The mathematical formulation of this method can be
described concisely as follows. Without any loss of generality and for the sake of
simplicity, the Hamiltonian of an isolated quantum mechanical system composed of
a single particle moving on its line segment can be described as follows.

̂H( p̂, q̂) ≡ 1

2μ
p̂2 + V (q̂) (2)

where p̂ and q̂ stand for the momentum and the position operators of the system under
consideration, respectively. And, μ is the mass of the particle. We, here and hence
forth, use the hat symbol to emphasize on operator nature. The Kronecker power
series expansion of the potential function can be explicitly written as its Maclaurin
series if there is only one degree of freedom for the system. For this case, Maclaurin
series and the Kronecker power series match. In the systems with more than one degree
of freedom, the potential function can be expressed in all nonnegative powers of the
position operators and for conciseness we prefer to use the Kronecker power series
which can be written as follows.

V (q̂) =
∞
∑

j=0

vT
j r̂⊗ j (3)

where r̂ stands for the vector whose components are the position operators each of
which corresponds to a separate degree of freedom, and therefore, its dimensionality is
the degree of freedom. In this equations, the linear combination coefficient, v j stands
for a vector of n j elements where n denotes the system’s degree of freedom. This
dimensionality is because of the dimensionality balance of the equation in its both
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sides (as we are going to see soon, r̂ is composed of n elements and enforces r̂⊗ j to
have n j elements due to the definition of Kronecker power).

This structure can even be used for the univariate case when we attempt to use the
“Space Extension” concept by regarding certain position operator dependent expres-
sions as if they are independent entities. In such cases the vector r̂’s elements are
composed of linear and nonlinear functions of the position operator. Then, the above-
mentioned series expansion of the potential function can be obtained from the Maclau-
rin or Taylor series expansion if V (q̂) is analytic in the spectral domain of the position
operators and r̂ contains positive integer powers of the position operator. If V (q̂) has
polar singularities, the abovementioned series expansion can be obtained from Laurent
series and, in that case, the vector r̂ additionally or lonely contains negative powers
of the position operators. In (3), “⊗” and (·)⊗ j denote the Kronecker product symbol
and j th Kronecker power of a vector. Explicit structures are given as follows.

u ⊗ v =
[

u1vT u2vT . . . unvT
]T

(4)

u⊗ j = u ⊗ u⊗ j−1, u⊗0 = 1 (5)

Beside all these definitions, so called “system vector” has to be defined to proceed.
System vector is composed of momentum operator and previously defined vector r̂ as
follows.

s ≡
[

p̂ r̂T
]T

(6)

The expansion given in Eq. (3) is not unique in both coefficients and in the system
vector definition, and therefore, has certain flexibilities. The dimension of the sys-
tem vector depends on the choice of the vector r̂ which may be generally specified
after certain space extensions. The flexibilities mentioned above can be used for the
algorithm development and analysis of PEA together with certain space extension
strategies. These issues are considered beyond the scope of this work. After all these
definitions, the time evolution of the system vector can be expressed as follows by
using Ehrenfest theorem.

d 〈s〉 (t)

dt
=

〈

i

h̄

[

̂Hs − s ̂H
]

〉

≡ 〈{

̂H , ŝ
}〉

(7)

where the rightmost representation is known as Poisson bracket. From (2), (3), and
(6), it is not difficult to see that the following equality holds.

{

̂H , s
} ≡ i

h̄

[

̂Hs − s ̂H
] =

∞
∑

j=0

H(p)
j s⊗ j (8)

where the superscript (p) is used to imply belonging to Poisson bracket. The coeffi-
cient entity, H(p)

j , except in the cases where j = 0, 1, is a rectangular matrix of n ×n j
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type. Now this is an operator algebraic equality. The right hand side expression’s coef-
ficient matrices except H(p)

0 and H(p)
1 involve uncertainties in their structures. These

uncertainties can be characterized by certain number of parameters we call flexibil-
ities. These flexibilities can be used to get certain properties in the set of coefficient
matrices, like the convergence rate of their norms. A recent paper about these flexibil-
ities proposes equipartition theorem dictating us to take the coefficients of same type
multivariate terms equal in (8) [15,16]. After fixing the flexibilities in the rectangular
matrix coefficients of (8), we get a unique equality over the given and therefore known
entities, the Kronecker powers of the system vector of operators. Even though, these
Kronecker powers are specified entities, their expectation values are unknown enti-
ties. The Ehrenfest theorem and (8) relates the time derivative of the system vector’s
expectation value to the Kronecker power expectation values of the system vector
operator. These latter entities are also unknown and there is no direct way to relate
them to the expectation value of the system vector operator through certain specified
functions because of the probabilistic nature of the expectation values. All these urge
us to establish an ODE for the j th Kronecker power of the system vector operator as
follows.

d
〈

ŝ⊗ j
〉

(t)

dt
=

〈{

̂H , s⊗ j
}〉

(9)

Since it is very well-known that the Poisson bracket obeys Leibnitz rule of the product
differentiation we can rewrite this equation as

d
〈

ŝ⊗ j
〉

(t)

dt
=

〈 j−1
∑

k=0

s⊗k ⊗ {

̂H , s
} ⊗ s⊗ j−k−1

〉

(10)

which can be combined with (8) and then the use of the fact that Kronecker product
can be distributed over the matrix product (and vice versa) under the multiplicative
consistency we can arrive at

d
〈

ŝ⊗ j
〉

(t)

dt
=

∞
∑

k=0

E j,k

〈

ŝ⊗k
〉

(t), j = 1, 2, . . . (11)

where E j,k is explicitly defined as follows.

E j,m ≡
j−1
∑

k=0

(

I⊗k
n ⊗ H(p)

m− j+1(t) ⊗ I⊗( j−k−1)
n

)

j, m = 0, 1, 2, 3 . . . (12)
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As we have defined, the Evolution Matrix contains rectangular E j,k matrices as its
blocks and can be explicitly given as follows.

E ≡

⎡

⎢

⎢

⎢

⎢

⎣

E0,0 · · · E0, j · · ·
...

. . .
...

. . .

E j,0 · · · E j, j · · ·
...

. . .
...

. . .

⎤

⎥

⎥

⎥

⎥

⎦

(13)

After all these steps, countably many sets of linear ODEs can be obtained in the
following form.

dξ(t)

dt
= Eξ(t), (14)

where,

ξ(t) =
[

〈

ŝ⊗0
〉T
(t)

〈

ŝ⊗1
〉T
(t) . . .

]T

(15)

and the formal solution is as follows.

ξ(t) = etEξ(0) (16)

Since the evolution matrix is denumerably infinite, it is impossible to produce a
practically utilizable solution from that equation unless somehow certain approxi-
mants (like truncation approximants) are defined. Thus, truncation approximants are
perhaps best options to be employed. If the series expansion of the potential func-
tion given in (3) is finite, evolution matrix is not full but in block banded structure.
To be able to produce solution from the above equation, the first step is to construct
recurrence relations. This may bring us too much computational complexities both
for the analysis and developing algorithms as long as the matrix E remains in full
upper block Heisenberg form. Thus, it is necessary to construct evolution matrix in
more eligible forms. This can be accomplished by adding a constant term and also
adding some other nonlinear operator structures to the system vector. By these space
extension strategies, it is possible to form evolution matrix in a banded structure of
two adjacent block diagonals (one of which is the main block diagonal). Moreover, by
constancy added space extension (CASE) temporal behavior can be removed (bringing
autonomy) from the kernel of the resultant equation s of recurrence relations [8–16].
And formal final solution of the PEA can be written in the following form.

〈̂s〉 (t) = eβt
∞
∑

j=0

1

j !
(

eβt − 1

β

) j

T j

〈

s⊗ j+1
〉

(0) (17)

Computation of
〈

s⊗ j+1
〉

(0) requires the knowledge of the initial wave packet. Even
though the initial wave packet is known, the task of computing T j

〈

s⊗ j+1
〉

(0) may
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be computationally expensive even if T j is sparse due to the Kronecker product sum
given in (12). On the other hand, these series are divergent everywhere on the studied
domain except under certain conditions. The necessary conditions were mentioned
in some previous studies [12]. Thus, it is a very important task to clarify sufficient
conditions for the convergence or to extract knowledge from these divergent series.
For this purpose, it is necessary to write these series in another form as follows.

〈̂s〉 (t) =
∫

V

dV W (x)eβt
∞
∑

j=0

1

j !
(

eβt − 1

β

) j

T j x⊗ j (18)

Another form can be considered as follows.

〈̂s〉 (t) =
∫

V

dV eβt
∞
∑

j=0

1

j !
(

eβt − 1

β

) j

T j W j (x)x⊗ j (19)

These are more eligible forms to reduce the computational complexity because of the
direct usage of the Kronecker powers of vectors and also some algorithms currently
developed for this purpose. To achieve this, our first approach is to define a multivariate
finite interval Hausdorff moment problem.

3 Definition of the multivariate moment problem

The univariate moment problem is defined as seeking an inverse mapping from a given
sequence to its related measure. More concisely it can be defined as follows.

μ j ≡
b
∫

a

dxW (x)x j , j = 0, 1, 2, . . . (20)

where the symbol W (x) characterizes an unknown function which can be considered
as generating function even though it is expected to be a true weight function. μ j

stands for the given sequence elements (these are called “moments” if the generating
function W (x) becomes a true weight function). Typically, there are three kinds of
moment problems. These are, (1) Hausdorff moment problem in which the interval is
considered to be bounded; (2) Stieltjes moment problem which is corresponding to
a semi-infinite interval; and, (3) Hamburger moment problem defined over the fully
infinite interval.

In this study we will go beyond the univariance and consider the multivariate Haus-
dorff moment problem, via Kronecker power sequences defined as follows.

μ j ≡
∫

V

dV W (x) x⊗ j , j = 0, 1, 2, . . . (21)
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where μ j corresponds to j th element of the sequence at the focus. It is a vector
whose dimensionality changes from j value to j value.2 x stands for an n-element
vector and may be called “System vector” due to inspiration from dynamical systems.
The Kronecker power definition of the previous sections remains also valid here.
W (x) stands for a generating function we desire to prove that it becomes a weight
function under the satisfaction of certain conditions. In this formula, V denotes a finite
rectangular hyperprism positioned in a finite region of the Cartesian space spanned by
the elements of the vector x such that its each edge is parallel to a separate coordinate
axis. Whereas dV denotes the volume element in this n-dimensional Cartesian space.

In univariate case the interval of Hausdorff moment problem is finite but it can
always be converted to the standard unit interval [ 0, 1 ] through an appropriate affine
transformation. Same thing can also be done here, in the multivariate case, and the
abovementioned hyperprism can be converted to a unit hypercube whose one corner is
located at the origin while each of the others resides on a different positive coordinate
axis. Even though this standardization may gain importance for practicality we do not
really need it in this conceptual analysis.

All these imply that μ j has n j components. In other words, the sequence under
consideration is constructed by elements with different and increasing dimensionalities
(this is some how out of our familiarities but is required to use Kronecker powers here).

In the sense of quantum dynamics under PEA, μ j s correspond to
〈

s⊗ j
〉

(0)s. Since
this latter entity may become very dispersive as j grows, depending on the initial
wave function and the system under consideration, PEA solutions may become only
asymptotically converging. Hence, expressing them via moment-like-integrals may
bring uniform convergence to their integral representation kernels that urges us to use
Borel sum techniques to get sums of divergent series. This is the reason why we spend
so much effort for the investigations of these types issues here.

The definition and the solution of multivariate finite region Hausdorff moment
problem of this type is a novel issue even though certain results have been reported [17,
18] by using multivariate Taylor series structures. The use of Kronecker power series
somehow condensates the results of multiindex formulation involving theories. Hence,
we can state that the main contribution of this study is both in the research area of
moment problem and of PEA within Kronecker power series perspective.

The abovementioned multivariate moment problem can be extended to the investi-
gation of the sequences over the following elements

μ j ≡
∫

V

dV w (x) [ W (x) x ]⊗ j , j = 0, 1, 2, . . . (22)

2 At this point it is better to emphasize on how the mathematical object “Sequence” is defined. It is known
as “A list of elements”. It is not a set because the repetition of the elements is allowed and, beyond that, the
elements should be ordered. The general tendency is to use same type elements, that is, the objects sharing
at least one property like in positive integers, rational numbers, and so on. Here, the shared property is
the global definition, “the integral of a given so-called state vector’s Kronecker powers under a generating
function factor”.
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where everything is same as before except the new entity W (x) which is an n × n
type matrix valued function of the system vector. W (x) is introduced to reflect the
interaction between the elements of the system vector. Our anticipation is that the
introduction of this entity may bring certain flexibilities to the practical determination
of the function w (x). This issue is focused on in the fifth section.

Another moment-like problem considered in this study uses a matrix generating
function which appears in place of the weight function of the above analysis. We
focus on the following sequence elements generated over the Kronecker powers of the
so-called system vector x

μ j ≡
∫

V

dV W j (x) x⊗ j , j = 0, 1, 2, . . . (23)

where μ j stands for the same thing as we mentioned above and may be correspondant
to

〈

s⊗ j
〉

(0) in PEA for the quantum dynamical evolution. In contrast to the above
cases, W j (x) is a matrix valued unknown generating function we desire to get it as a
matrix valued weight function. The j dependence in this matrix is mandatory because
of the need for the multiplicative consistency at the right hand side kernel. In this type
problems the entities to be determined are infinitely many because of j dependence.
This brings the possibility of creating an infinite set of matrix valued functions which
may be called generating function basis. We focus on this type problems in the sixth
section.

Our basic intention to deal with this type of generating function problem is for
enabling the model the dependencies between the expectation values of different oper-
ators included in the Kronecker powers of the system vector under the abundance of
generating function basis functions. We expect somehow to characterize inter-operator
interactions.

We restrict ourselves with the finite region moment problem, even though the Stielt-
jes moment problem can also be considered and solved in a way similar to the one
presented in this paper. The comparison of these moment problem solutions’ efficiency
is left as a future work and considered beyond the scope of this study.

4 Solution of multivariate Hausdorff moment problem

4.1 Positive definiteness of the multivariate case Hankel matrices

In his pioneering works, Felix Hausdorff stated that Hausdorff moment problem for
the univariate case has a unique solution if the Hankel matrices of all types for the
problem are positive definite [19,20]. The same property exists for the multivariate
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case. The Extended Hankel matrices3 can be defined in block structure for multivariate
case as follows.

Hm ≡

⎡

⎢

⎢

⎢

⎣

M0,0 M0,1 . . . . . .

M1,0 M1,1 . . . . . .

. . . . . .
. . . . . .

. . . . . . . . . Mm,m

⎤

⎥

⎥

⎥

⎦

(24)

where

M j,k ≡
∫

V

dV W (x)x⊗ j x⊗kT
, j, k = 0, 1, 2, . . . , m (25)

and therefore, M j,k is a matrix of n j × nk type when we use an x vector composed
of n elements. If this Extended Hankel matrix is positive definite, it must satisfy the
following property for any (1 + n + n2 + · · · + nm)-element vector y.

q (y) ≡ y†Hmy > 0 (26)

where the symbol † stands for the Hermitian conjugation (even though we may not
need the complex valuedness here, we have desired the warranty of the validity for
the extensions to the complex valuedness).

Using (25) in (26) implies

q (y) =
m
∑

j,k

y†
j M j,kyk

=
∫

V

dV W (x)

⎡

⎣

m
∑

j=0

y†
j x

⊗ j

⎤

⎦

[

m
∑

k=0

x⊗kT
yk

]

q (y) =
∫

V

dV W (x) |φ(x, y)|2 (27)

where | | is used to symbolize complex modulus and the scalar function φ (x, y) is
defined as

φ (x, y) =
m
∑

k=0

x⊗kT
yk (28)

3 The true definition of Hankel matrices requires the equivalence of all elements in its each anti-diagonal.
It is satisfied if the matrix x becomes a one-element vector, mainly scalar. The multivariance destroys the
equivalence amongst the antidiagonal elements. However, we still keep the word “Hankel” in this matrix to
recall the inspirations from the Hankel matrices even though we somehow emphasize on the discrimination
by using the word “Extended” in the name of present case matrices.
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and, beyond that, y j is the j th subvector of y. Now all these imply that q (y) becomes
positive as long as W (x) remains nonnegative and φ(x, y) does not identically vanish
for some nonzero y vectors. The Kronecker powers, except the zeroth and first one,
of the vector x which is assumed to be composed of linearly in dependent elements,
have in fact linearly dependent elements. This can be easily noticed as follows: (1) The
zeroth Kronecker power of x is just the scalar 1 by convention while the first Kronecker
power of x is composed of linearly independent elements; (2) The second Kronecker
power of x involves the squares of its elements and all possible binary products of
those elements. The squares are single while each binary product appears twice, like
x1x2 and x2x1 which are identical because of commutativity; (3) The number of terms
which repeatedly appear as the elements of the higher Kronecker powers of x increases
very rapidly as the Kronecker power grows.

For example, in the case where x is composed of just two elements, x1 and x2; the
elements of the second Kronecker power of x are respectively x2

1 , x1x2, x2x1 and x2
2 .

Certainly there is a repetition and x ⊗2 has not 4 but 3 linearly independent elements,
say x2

1 , x1x2, and, x2
2 . This situation is reflected to the x ⊗2 involving portion of φ(x, y)

as follows

x ⊗2T
y2 = y(2)

1 x2
1 +

(

y(2)
2 + y(2)

3

)

x1x2 + y(2)
4 x2

2 . (29)

where “y”s superscripted by (2) are the elements of the vector y2. This expression can
identically vanish when y2 becomes proportional to the vector [ 0, 1,−1, 0 ]T where
the proportionality factor needs not to vanish. In other words, this expression can
vanish for certain nonzero y2 values. Truely speaking, it vanishes when y2 resides on
the straight line spanned by the vector [ 0, 1,−1, 0 ]T in four dimensional Cartesian
space. If we consider a y vector whose all subvectors, except y2 which resides on
the straight line spanned by the vector [ 0, 1,−1, 0 ]T in four dimensional Cartesian
space, vanish then that y, which is certainly nonzero, sets the value of the scalar
function φ (x, y) equal to zero. This takes us to the conclusion that q (y) vanishes at
least for this nonzero y vector.

Certain similar circumstances can be encountered for the terms involving higher
Kronecker powers of x. In those cases, more than one vectors orthogonal to the focused
Kronecker power of x can be defined and all corresponding y subvectors residing on
anyone of the lines spanned by these vectors annihilate the corresponding terms in
φ (x, y). All these analyses dictate us that there are some nonzero y vectors setting
φ (x, y) identically equal to zero. Evidently, q (y) vanishes for those y vectors while it
remains positive for all other y vector values as long as W (x) is a true weight function.

The above discussions and progresses can be considered as the proof of the follow-
ing theorem:

Theorem 1 If W (x) symbolizes a true weight function then the multivariate case
Extended Hankel Matrix Hm is positive definite for m = 0 and m = 1 while it
is at least positive semi-definite when m ≥ 2 over the

(

1 + n + n2 + · · · + nm
)

-
dimensional Cartesian space.

The statement of this theorem is not somehow what we have expected. Our expec-
tation was not the semi-definiteness but definiteness. This semi-definiteness is in fact
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because of the existence of zero eigenvalues and corresponding eigenvectors. We
somehow need to get rid of them. To this end we can again consider the quite simple
case where x is composed of the elements, x1 and x2. The coefficient vector for x ⊗2

is y2 which is composed of y(2)
1 , y(2)

2 , y(2)
3 , y(2)

4 elements. If we use the equipartition
theorem which has been quite recently conjectured and proven [15,16] then we have
to take y(2)

2 = y(2)
3 . This is certainly a restriction over the four dimensional Cartesian

space where y2 lies. This restriction corresponds to another restriction over the vector
y in a greater dimensional space. Since the restriction equation is linear and homoge-
neous (otherwise not subspace but maybe a manifold is obtained), the vectors obeying
this restriction span a subspace in a dimensionality one less than the dimension of
original space where y lies. We may denote this restriction by the superscript (res)
when we need to distinguish the related entities from the others.

The restriction is not peculiar to y2 and to the cases where n = 2. All the other
cases and related vectors except y0 and y1 have restrictions and dimension reduction
s to form subspaces. We call the subspace of (1 + n + · · · + nm)-dimensional Carte-
sian space which is spanned by the y(res) vectors whose subvectors are accordingly
and fully (all possible restrictions coming from the equipartition theorem are consid-
ered) restricted, “Equipartition Based Restriction Space” for the (1 + n + · · · + nm)-
dimensional Cartesian space. As long as we consider quadratic form over this Restric-
tion Space, it is possible to show that the function φ(x, y) never identically vanishes
for nonzero restricted y(res) vectors (or “over the Restriction Space”). This urges us
to conjecture the following theorem whose proof can be easily given by using these
ideas here even though we do not intend to give the details.

Theorem 2 If W (x) symbolizes a true weight function then the multivariate case
Extended Hankel Matrix Hm is positive definite for all nonnegative integer m values
over the Equipartition Theorem Based Restriction Space of the (1+n+n2+· · ·+nm)-
dimensional Cartesian space.

The positive definiteness of Hm implies that its all up per leftmost square truncations
are also positive definite on the Equipartition Theorem Based Restriction Space. These
theorems guarantee the positive definiteness of the multivariate case Hankel matrices
only when W (x) stands for a true weight function. Otherwise, positive definiteness
and positive semi-definiteness can not survive for all m values. This takes us to the
following theorems which are in fact reverses of Theorems 1 and 2.

Theorem 3 If all of the multivariate case Extended Hankel Matrices, Hms are positive
definite for m = 0, 1 and semi-definite for m ≥ 2 over the (1 + n + n2 + · · · + nm)-
dimensional Cartesian space then the function W (x) becomes a true weight function
(however it may vanish on a finite number subspace with a dimensionality less than
the dimension of the original space under consideration).

Theorem 4 If all of the multivariate case Extended Hankel Matrices, Hms, are posi-
tive definite for all nonnegative integer m values over the Equipartition Theorem Based
Restriction Space of the

(

1 + n + n2 + · · · + nm
)

-dimensional Cartesian space then
the function W (x) is positive definite (is a weight function which is always positive).
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The last two theorems are about the existence of a true weight function for the μ j s.
This weight function becomes determinate (can be uniquely determined) in the case
of the positive definiteness as we are going to show in the next subsection.

4.2 Determining the weight function

Let us now use a weight function Ω (x) whose explicit structure is known by us, and,
consider the following function

f (x) ≡ W (x)

Ω (x)
(30)

whose utilization in (21) converts the multivariate case moment problem to the fol-
lowing form

μ j ≡
∫

V

dV Ω(x) f (x)x⊗ j , j = 0, 1, 2, . . . (31)

We may assume that the function f can be expanded to the following Kronecker power
series

f (x) =
∞
∑

k=0

fT
k x⊗k (32)

where fk stands a vector of nk elements which can be evaluated by using the known
structure of the function f . This expansion urges us to write

μ j =
∞
∑

k=0

∫

V

dV Ω(x)fT
k x⊗k ⊗ (In j x⊗ j )

=
∞
∑

k=0

(

fT
k ⊗ In j

)

∫

V

dV Ω(x)x⊗k+ j (33)

where In j denotes n j × n j type identity matrix and we have used the fact that a
Kronecker product can be distributed over the matrix product and vice versa as long
as the multiplicative consistency is protected amongst the factors. The symbolization
of the rightmost integral on the right hand side of the above equation by ωk+ j , that is,

ωk+ j ≡
∫

V

dV Ω(x)x⊗k+ j , (34)
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enables us to get

μ j =
∞
∑

k=0

(fT
k ⊗ In j )ωk+ j , j = 0, 1, . . . (35)

To proceed we need to define

R(Ω)
k, j = [

m1 m2 . . . mnk

]

(36)

where mi is the n j × 1 dimensional subvector of the vector ωk+ j and R(Ω)
k, j is an

n j × nk type matrix. This procedure may be called “folding procedure” because of its
nature. Using this definition together with the following Kronecker product property
amongts three multiplicatively consistent matrices, A, B, Y

(BT ⊗ A)vec(Y) = vec(AYB) (37)

where vec symbolizes an operator that produces a vector from a given matrix by the
“unfolding procedure”.

All these permit us to write

(

fT
k ⊗ In j

)

ωk+ j =
(

fT
k ⊗ In j

)

vec
(

R(Ω)
k, j

)

= vec
(

In j R(Ω)
k, j fk

)

= R(Ω)
k, j fk (38)

The utilization of this equality in (27) produces the following linear system of equations

μ j =
∞
∑

k=0

R(Ω)
k, j fk, j = 0, 1, 2, . . . (39)

where, as can be shown without any remarkable difficulty,

R(Ω)
k, j ≡

∫

V

dV Ω (x) x ⊗ j x ⊗k T
, j, k = 0, 1, 2, . . . (40)

which means that the blocks of R are the blocks of multivariate case Extended Hankel
Matrices for the weight function Ω (x). This fact makes the denumerably infinite coef-
ficient matrix in (39) positive definite over the Equipartition Theorem Base Restriction
Space we have previously defined.

The equations in (39) can also be written in the following matrix form

R∞f∞ = μ∞ (41)
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where

f∞ ≡

⎡

⎢

⎢

⎢

⎢

⎣

f0
f1
...
...

⎤

⎥

⎥

⎥

⎥

⎦

, μ∞ ≡

⎡

⎢

⎢

⎢

⎢

⎣

μ0
μ1
...
...

⎤

⎥

⎥

⎥

⎥

⎦

(42)

and

R∞ ≡

⎡

⎢

⎢

⎣

R(Ω)
0,0 R(Ω)

0,1 · · ·
R(Ω)

1,0 R(Ω)
1,1 · · ·

...
...

. . .

⎤

⎥

⎥

⎦

. (43)

Thus, the solution of the finite interval moment problem can be obtained from the
solution of a denumerably infinite linear algebraic equation system given by (39). The
denumerably infinite coefficient matrix of this equation is positive semi definite as
we have investigated before (just replacing W by Ω takes us to this judgement). The
semi-definitiness imply the existence of zero eigenvalues and therefore the nullspace
of the coefficient matrix in (39) is not empty. This may break the solvability of the
equations in (39). However it is not hard to show that the right hand side infinite vector
of (39) is orthogonal to the null space of the coefficient matrix of the same equation.
This is because of the Kronecker power structure in the definition of the right hand
side vector. In fact the vectors spanning the null space of the co efficient matrix of
this equations are defined as being orthogonal to the Kronecker powers of the vector
x such that the orthogonality remains valid without being affected from the values
of the vector x. This orthogonality between the right hand side vector and the left
hand side coefficient matrix nullspace guarantees the solvability of the equations in
(39). Despite this solvability we may not obtain uniqueness because of the appearance
of an arbitrary infinite linear combination of the nullspace spanning vectors of this
equation in the solution. On the other hand these arbitrarinesses disappear when they
are plugged in the related places in the Kronecker power representation of the function
f (x). Hence all the coefficients in the arbitrary linear coefficients can be taken equal
to zero without any loss of generality. This brings the uniqueness. All this discussions
can be gathered in the following statement: “The solution of (41) over the Equipartition
Theorem Based Restriction Space is unique”.

Since we have chosen Ω (x) as a weight function, it can vanish only a finite number
of at most (n −1)-dimensional subregion of n-dimensional Cartesian space. However
its selection is at our disposal and it resides in the denominator of the f ’s definition.
To avoid singularities it is better to choose this auxiliary weight function positive
everywhere in the integration domain. This guarantees a nonvanishing nature in the
integration domain for the function f . Thus, the unique determination of the function
f can be reflected to the function W for the uniqueness in W determination. This
completes the analysis for the weight function determination and urges us to write the
following theorem.
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Theorem 5 If the multivariate case Extended Hankel Matrices Hms are all positive
definite over the corresponding Equipartition The orem Based Restriction Spaces then
the weight function W (x) can be uniquely determined for the given μ j vectors. And
then the set of these vectors can be called “Multivariate Kronecker Power Moment
Sequence”.

The direct solution of (41) is impossible due to infinity in the structure unless
certain very specific situations are under consideration. However, it is possible to
truncate this equation to finite linear algebraic equations and then to get approximants
whose qualities increase as the truncation order is taken to infinity. The convergence
can be investigated through the utilization of the escalator method. We do not intend
to get in to the details of this practical and technical issue.

5 Multivariate case extended Hausdorff moment problem over the images of
system vector under a matrix transformation

In this case the sequence elements are defined as follows

μ j ≡
∫

V

dV w (x) [ W (x) x ]⊗ j , j = 0, 1, 2, . . . (44)

where the previously used scalar W (x) function is denoted by w (x) while the system
vector is replaced with its image under the transformation by a square matrix of n × n
type, denoted as W (x).

The so-called Extended Hankel Matrix is defined via the following formula as
before

Hm ≡

⎡

⎢

⎢

⎢

⎣

M0,0 M0,1 . . . . . .

M1,0 M1,1 . . . . . .

. . . . . .
. . . . . .

. . . . . . . . . Mm,m

⎤

⎥

⎥

⎥

⎦

(45)

while, now,

M j,k ≡
∫

V

dV w (x) [ W (x) x ]⊗ j [ W (x) x ]⊗kT
, j, k = 0, 1, 2, . . . , m (46)

The previously defined scalar function φ (x, y) takes the following new form

φ (x, y) =
m
∑

k=0

[ W (x) x ]⊗kT
yk (47)

This information is sufficient for repeating the analysis in the previous section for
this case. Even though we do not intend to explicitly give the intermediate steps, it is
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possible to conjecture theorems 1–4, revised for this case, and then prove. Only new
thing is the matrix valued function W (x) and as long as it is nonsingular there is no
change in the previously done brainstorming. However, its nonempty nullspace affects
almost everything to get the new theorems and proofs. Since W (x) is at our disposal
we may assume its nonsingularity and avoid possible complications which may bring
singularities. In fact nonsingularity can be considered not so much great restriction
for the practicality. Hence we suffice with the nonsingular cases here.

The conjecture and the proof of the Theorem 5 can be realized for its revised form
for this case. However, in this case, we need to write, first,

f (x) ≡ W (x)

Ω (x)
(48)

where Ω (x) stands for a known function as we assumed previously. This takes us to
the following formula

μ j ≡
∫

V

dV Ω(x) f (x) [ W (x) x ]⊗ j , j = 0, 1, 2, . . . (49)

where we are going to prefer to use the following Kronecker power series not over the
system vector but over its image under the mapping realized by using W (x)

f (x) =
∞
∑

k=0

fT
k [ W (x) x ] .⊗k (50)

The analysis to get the expansion coefficients here is almost exactly same as before
and takes us to the same conclusions as long as the matrix W (x) is nonsingular. We
find this analysis for this case sufficient within the goal of this work.

6 Sequences via integrals over weighted Kronecker powers

We are going to consider the sequence whose elements are defined as follows in this
section

μ j ≡
∫

V

dV W j (x) x⊗ j , j = 0, 1, 2, . . . (51)

which is somehow extended form of the sequence elements dealt with in the previous
section. Indeed, the selection of the following expression

W j (x) ≡ w (x) W (x)⊗ j , j = 0, 1, 2, . . . (52)

takes us to the case of the previous section. This expression is however dependent on
two entities: a common scalar function w and the matrix W. These entities can be
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however considered as the generators of the W j matrix valued weight functions. Here
we extend the situation to somehow denumerable infinitely many generators, W j s’
themselves.

Here we are not going to start the analysis by defining Extended Hankel Matrices
as we did in the last two sections. Instead we are going to try to find a way for the
evaluation of the matrix W j (x) rather easily. To this end, we may be inspired from
(52) and, as a first step, write

W j (x) ≡ ω (x) F j (x) Ω (x)⊗ j , j = 0, 1, 2, . . . (53)

which replaces 51 with the following equation

μ j ≡
∫

V

dV ω (x) F j (x) [ Ω (x) x ]⊗ j , j = 0, 1, 2, . . . (54)

where apparently

F j (x) = 1

ω (x)
W j (x)

[

Ω (x)⊗ j
]−1

(55)

which implies that we need the invertability of the scalar ω (x) and the matrix Ω (x).
This is always possible since the choice of ω (x) and Ω (x) is at our disposal. To
facilitate the further analysis we are going to prefer to work with the true weight
function type entities and we assume that ω (x) and Ω (x) are positive everywhere in
the integration domain. This assumption enables us to expand F j (x) to a Kronecker
power series. However, here we do not use the Kronecker powers of the system vector.
Instead, we deal with the Kronecker powers of the system vector’ s image under an
appropriately chosen square matrix valued function of system vector.

Before proceeding we can again focus on (54) where μ j is composed of n j elements
while W j is a matrix of n j × n j so is F j . If we denote the element of F (x) at the

intersection of its j1th row and j2th column by F ( j)
j1, j2

(x) we can write the following
image Kronecker power series

F ( j)
j1, j2

(x) =
∞
∑

k=0

F( j)
j1, j2,k

T
[ Ω (x) x ] ⊗k =

∞
∑

k=0

[ Ω (x) x ] ⊗k T
F( j)

j1, j2,k
(56)

which mean

∫

V

dV ω (x) F ( j)
j1, j2

(x) [Ω (x) x] ⊗ j =
∫

V

dV ω (x) [Ω (x) x]⊗ j F ( j)
j1, j2

(x)

=
∞
∑

k=0

∫

V

dV ω (x) [Ω (x) x]⊗ j [Ω (x) x]⊗k T
F( j)

j1, j2,k
(57)
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If we define

M j,k ≡
∫

V

dV ω (x) [Ω (x) x]⊗ j [Ω (x) x ]⊗k T
, j, k = 0, 1, 2, . . . (58)

then we can write

∞
∑

k=0

∫

V

dV ω (x) [Ω (x) x]⊗ j [Ω (x) x]⊗k T
F( j)

j1, j2,k
=

∞
∑

k=0

M j,kF( j)
j1, j2,k

(59)

which implies

μ j =
n j
∑

j1, j2

e j1 eT
j2

∞
∑

k=0

M j,kF( j)
j1, j2,k

, j = 0, 1, 2, . . . (60)

Evidently, these equations involve denumerable infinitely many unknowns and only
a few (n j ) of them can be expressed in terms of others. If the resulting expressions
of those unknowns are used in the definition of the F definition then a linear combi-
nation of denumerable infinitely many matrix valued functions appears with arbitrary
coefficients in the expressions. These should be linearly independent and may be used
like a basis set for the generating function W j . We do not get into further details of
this issue since we find this level of information sufficient for our purposes.

7 Concluding remarks

The primary focus of this study has been to extend the results of PEA for the deter-
mination of expectation value dynamics of quantum mechanical operators without
explicitly solving Schrödinger equation. For this purpose, first a multivariate finite
interval Hausdorff moment problem is defined to be able to get more appropriate
forms for the analysis and algorithm developments of PEA. Necessary and sufficient
conditions for the existence and the uniqueness of the solution to this problem is dis-
cussed. Solution methodology is given to that problem in rather broader mathematical
details. This is the first contribution of this study.

Also, in this study, a matrix weighted Kronecker powers sequence has been taken
into consideration as a multivariate finite interval Hausdorff-like moment problem to be
able to model the correlations between expectation values of different kinds of quantum
mechanical operators and thus to expect more accuracy and rapid convergence in the
calculations. Necessary and sufficient conditions for the existence of the solution to
this problem has also been discussed. Here we have used not the Kronecker powers
of the system vector but its image under an appropriately given square matrix valued
function of the system vector. This may bring more control for the approximations.
This is the second important contribution of this study.

The third type moment problem like approach has been focused on the sequence
whose elements involve order dependent matrix coefficients. This problem aims the
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evaluation of the order dependent moment like generating functions and certainly has
denumerable infinitely many solutions. This infinitely many solution case generates
infinitely many linearly independent matrix valued functions which can be used as
basis function set.

The results presented here have two important aspects. The first one of these aspects
is the usage of the weight functions generated from the moment problems suppress
the divergent nature of the initial expectation values of the Kronecker powers of the
system vector and thus PEA produces convergent series. The second aspect is that
computational expense of the PEA can have a dramatic decrease because the sum of
the series which are given in (18) and (19) does not require the explicit formation
of the telescopic matrices whose dimensions increases by the powers of the terms
taken from the series. Thus, this formulation requires less computational effort both
in the sense of memory requirements and in the sense of necessary CPU time. Fur-
ther details about implementation and computational requirements are left as a future
work.

The results and the solutions obtained in this work can facilitate the analysis and the
algorithm developments of the PEA for the quantum mechanical applications beside
the systems whose initial conditions is not given with an accompanying Dirac delta
initial probability density function.

The Stieltjes moment problem is expected to be one of our future work s in this
presented framework. The another one of our future studies will be presumably the
solution of the rectangular eigenvalue problem. Also, Padé summation of the divergent
series produced by PEA can also be considered as future studies.

The companion of this paper focuses on the mathematical fluctuation theoretical
aspects of the issues of this work.
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